
Clear["Global`*⋆"]

1.  Normal distribution. Apply the maximum likelihood method to the normal distribution 
with μ = 0.

What did I do here? I ginned up a list of outcomes using the normal distribution with the 
mean required by the problem description and a small standard deviation. Then I asked 
Mathematica to create a distribution based on the characteristics of the list members and 
the ParameterEstimator using the “MaximumLikelihood” method. I can view the distribu-
tion created and judge its fidelity to the original.
data = RandomVariate[NormalDistribution[0, 0.001], 10000];
EstimatedDistribution[data, NormalDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

NormalDistribution5.67086 × 10-−6, 0.00100286

I notice that each time I re-run the above command the output changes slightly.

The ParameterEstimator procedure has a half dozen search methods, including
EstimatedDistribution[data, NormalDistribution[n, p],
ParameterEstimator → {"MethodOfMoments"}]

NormalDistribution5.67086 × 10-−6, 0.00100286

EstimatedDistribution[data, NormalDistribution[n, p],
ParameterEstimator → {"MethodOfCumulants"}]

NormalDistribution5.67086 × 10-−6, 0.00100286

I could plot the pdfs of the three manufactured distributions but there would be nothing to 
distinguish one from another.

3.  Poisson distribution. Derive the maximum likelihood estimator for μ. Apply it to the 
sample (10, 25, 26, 17, 10, 4), giving numbers of minutes with 0 - 10, 11 - 20, 21 - 30, 
31 - 40, 41 - 50, more than 50 fliers per minute, respectively, checking in at some airport 
check-in.

Clear["Global`*⋆"]

I was able to hit the right buttons on this one, I think. 
data = {10, 25, 26, 17, 10, 4}

{10, 25, 26, 17, 10, 4}



FindDistributionParameters[data, PoissonDistribution[μ],
ParameterEstimator → {"MaximumLikelihood", Method → "NMaximize"}]

{μ → 15.3333}

The answer above matches the answer in the text.

5.  Binomial distribution. Derive a maximum likelihood estimate for p.

Clear["Global`*⋆"]

data = RandomVariate[BinomialDistribution[10, 0.4], 1000];
dink = EstimatedDistribution[data, BinomialDistribution[n, p],

ParameterEstimator → {"MaximumLikelihood"}]

BinomialDistribution[9, 0.453778]

Show[Histogram[data, {0, 10, 1}, "PDF"], DiscretePlot[PDF[dink, x],
{x, 0, 11}, PlotStyle → PointSize[Medium]], ImageSize → 250]

If the maximum likelihood is at least nominal, as here, I would have to consider it as reason-
ably likely to represent the goal of the exercise.
data1 = RandomVariate[BinomialDistribution[10, 0.4], 10000];
dink1 = EstimatedDistribution[data1, BinomialDistribution[n, p],

ParameterEstimator → {"MaximumLikelihood"}]

BinomialDistribution[10, 0.40283]

data2 = RandomVariate[BinomialDistribution[10, 0.4], 30000];
dink2 = EstimatedDistribution[data2, BinomialDistribution[n, p],

ParameterEstimator → {"MaximumLikelihood"}]

BinomialDistribution[10, 0.400487]

Above I see the natural tendency for the maximum likelihood to go down as the sample size 
increases.

6.  Extend problem 5 as follows. Suppose that m times n trials were made and in the first n 
trials A happened k1 times, in the second n trials A happened k2 times, . . . , in the mth n trials 
A happened km times. Find a maximum likelihood estimate of p based on this information.

7.  Suppose that in problem 6 we made 3 times 4 trials and A happened 2, 3, 2 times, 
respectively. Estimate p.
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7.  Suppose that in problem 6 we made 3 times 4 trials and A happened 2, 3, 2 times, 
respectively. Estimate p.

Clear["Global`*⋆"]

data7 = RandomVariateBinomialDistribution12,
7

12
, 100000;

dink71 = EstimatedDistribution[data7,
BinomialDistribution[n, p], ParameterEstimator → {"MethodOfMoments"}]

BinomialDistribution[12.0097, 0.582034]

dink72 = EstimatedDistribution[data7, BinomialDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

BinomialDistribution[12, 0.582506]

dink73 = EstimatedDistribution[data7, BinomialDistribution[n, p],
ParameterEstimator → {"MethodOfCentralMoments"}]

BinomialDistribution[12.0097, 0.582034]

dink74 = EstimatedDistribution[data7, BinomialDistribution[n, p],
ParameterEstimator → {"MethodOfCumulants"}]

BinomialDistribution[12.0097, 0.582034]

dink75 = EstimatedDistribution[data7, BinomialDistribution[n, p],
ParameterEstimator → {"MethodOfFactorialMoments"}]

BinomialDistribution[12.0097, 0.582034]

N[7 /∕ 12]

0.583333

A couple of comments. I notice that RandomVariate will accept a rational fraction as stan-
dard deviation. As for the given information, I don’t think the number of trials matters, I 
believe that only the raw ratio is important here. After many run-throughs of testing, I see 
the following: Concerning the RandomVariate, the sample size, the last number, can’t 
smooth out the sample if the first number, trials, has small precision. This makes sense, 
though with problem 7 it is a fly in the ointment. As for the dinks, the 
MaximumLikelihood always differs from the other methods, though not always on the 
high side of the theoretical ratio decimal value. The other four methods, in my experience, 
always come up with exactly the same answer on this problem.

8.  Geometric distribution. Let X = Number of independent trials until an event A occurs. Show 
that X has a geometric distribution, defined by the probability function f[x] = pqx-−1, x = 1, 2, . 
. . , where p is the probability of A in a single trial and q = 1 - p. Find the maximum likelihood 
estimate of p corresponding to a sample x1 , x2 , . . . , xn of observed values of X.

9.  In problem 8, show that f(1) + f(2) + . . . + = 1 (as it should be). Calculate indepen-
dently of problem 8 the maximum likelihood of p in problem 8 corresponding to a single 
observed value of X.
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9.  In problem 8, show that f(1) + f(2) + . . . + = 1 (as it should be). Calculate indepen-
dently of problem 8 the maximum likelihood of p in problem 8 corresponding to a single 
observed value of X.

Clear["Global`*⋆"]

inr = PDF[GeometricDistribution[p], k]

 (1 -− p)k p k ≥ 0
0 True

tri = Sum[inr, {k, 0, 10}]

p + (1 -− p) p + (1 -− p)2 p + (1 -− p)3 p + (1 -− p)4 p + (1 -− p)5 p +
(1 -− p)6 p + (1 -− p)7 p + (1 -− p)8 p + (1 -− p)9 p + (1 -− p)10 p

tri /∕. p → 0.8

1.

The pdf shown above is equivalent to the one described in problem 8.
data9 = RandomVariate[GeometricDistribution[0.1], 1]

{3}

dib = EstimatedDistribution[data9, GeometricDistribution[n],
ParameterEstimator → {"MaximumLikelihood"}]

GeometricDistribution[0.25]

Observations on this problem. RandomVariate and the GeometricDistribution will not 
produce a non-zero single sample unless the input probability is 0.4 or less. If X is the sam-
ple, then the output probability is approximately 1

X , which is the text answer for this 
problem.

11.  Find the maximum likelihood estimate of θ in the density f[x] = θ ⅇ-−θ x if x ≥ 0 and 
f[x] = 0 if x < 0.

Clear["Global`*⋆"]

The following is not the way to define the desired distribution, because Mathematica can’t 
understand this formatting.

dist = ProbabilityDistributionPiecewiseθ ⅇ-−θ x, x ≥ 0, {0, x < 0},

{x, 0, ∞}, Assumptions → {θ > 0};

PDF[dist[], x]

PDFProbabilityDistribution

ⅇ-−x.. θ θ x.. ≥ 0
0 True

, {x.., 0, ∞}, Assumptions → {θ > 0}[], x

As an improvement on the above, the following was tried thanks to an example by Bob 
Hanlon on https://mathematica.stackexchange.com/questions/72996/custom-distribution
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As an improvement on the above, the following was tried thanks to an example by Bob 
Hanlon on https://mathematica.stackexchange.com/questions/72996/custom-distribution

dist2 = ProbabilityDistributionθ ⅇ-−θ x, {x, 0, ∞}, Assumptions → {θ > 0}

ProbabilityDistributionⅇ-−x.. θ θ, {x.., 0, ∞}, Assumptions → {θ > 0}

For Mathematica to return the pdf in processed form is a good sign.
PDF[dist2, x]

 ⅇ-−x θ θ x > 0
0 True

dpa = DistributionParameterAssumptions[dist2]

{θ > 0}

The pdf turns out to be normalized.
Assuming[dpa, Integrate[PDF[dist2, x], {x, 0, Infinity}]]

1

Assuming[dpa, Mean[dist2] /∕/∕ FullSimplify]
1

θ

Assuming[dpa, StandardDeviation[dist2] /∕/∕ Simplify]
1

θ

With mean equal to s.d. , I want to try the following.
PDF[dist2, x] ⩵ PDF[ExponentialDistribution, x] /∕/∕ Simplify[#, dpa] &

PDF[ExponentialDistribution, x] ⩵   ⅇ-−x θ θ x > 0
0 True



The above cell does not prove that dist2 is exponential, but in appearance it is exponential. 
I can choose θ to be 0.6 just for grins and try out a MaximumLikelihood move.
data11 = RandomVariate[ExponentialDistribution[0.6], 100000];

EstimatedDistribution[data11, ExponentialDistribution[p],
ParameterEstimator → {"MaximumLikelihood"}]

ExponentialDistribution[0.601181]

This is not what the text answer looks like, that being θ
&
 = 1

x_  .

13.  Compute θ
&
 in problem 11 from the sample 1.9, 0.4, 0.7, 0.6, 1.4. Graph the sample 

distribution function F
&
[x] and the distribution function F[x] of the random variable, with 

θ = θ
&
, on the same axes. Do they agree reasonably well? (We consider goodness of fit 

systematically in section 25.7.)
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13.  Compute θ
&
 in problem 11 from the sample 1.9, 0.4, 0.7, 0.6, 1.4. Graph the sample 

distribution function F
&
[x] and the distribution function F[x] of the random variable, with 

θ = θ
&
, on the same axes. Do they agree reasonably well? (We consider goodness of fit 

systematically in section 25.7.)

myemp = EmpiricalDistribution[{1.9, 0.4, 0.7, 0.6, 1.4}]

DataDistribution Type: Empirical
Datapoints: 5
Inputdimension: 1
Domain: {0.4, 1.9}



data13 = {1.9, 0.4, 0.7, 0.6, 1.4}

{1.9, 0.4, 0.7, 0.6, 1.4}

p1 = DiscretePlot[CDF [myemp, x],
{x, -−4, 4, .01}, PlotStyle → Red, ImageSize → 250];

sec = EstimatedDistribution[data13, ExponentialDistribution[p],
ParameterEstimator → {"MaximumLikelihood"}]

ExponentialDistribution[1.]

The above answer agrees (accidentally?) with the text answer.
p2 = DiscretePlot[CDF [sec, x], {x, -−4, 4, .01}];

Show[p1, p2]

15.  CAS EXPERIMENT. Maximum likelihood estmates. (MLEs). Find experimentally how 
much MLEs can differ depending on the sample size. Hint. Generate many samples of the 
same size n, e.g. of the standardized normal distribution, and record x and s2. Then 
increase n.

This is indeed an experiment. If the cells were to be run again, all answers would be differ-
ent. It demonstrates that sample size is limited in influence so long as the mean and stan-
dard deviation are expressed coarsely.
Clear["Global`*⋆"]
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data15a = RandomVariate[NormalDistribution[0.2, 0.01], 4];
data15b = RandomVariate[NormalDistribution[0.2, 0.01], 12];
data15c = RandomVariate[NormalDistribution[0.2, 0.01], 100];
data15d = RandomVariate[NormalDistribution[0.2, 0.01], 1000];
data15e = RandomVariate[NormalDistribution[0.2, 0.01], 10000];
data15f = RandomVariate[NormalDistribution[0.2, 0.01], 100000];

d15a = EstimatedDistribution[data15a, NormalDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

NormalDistribution[0.197877, 0.0105572]

d15b = EstimatedDistribution[data15b, NormalDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

NormalDistribution[0.202904, 0.00793746]

d15c = EstimatedDistribution[data15c, NormalDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

NormalDistribution[0.199636, 0.00986493]

d15d = EstimatedDistribution[data15d, NormalDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

NormalDistribution[0.199854, 0.00995169]

d15e = EstimatedDistribution[data15e, NormalDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

NormalDistribution[0.199871, 0.0100522]

d15f = EstimatedDistribution[data15f, NormalDistribution[n, p],
ParameterEstimator → {"MaximumLikelihood"}]

NormalDistribution[0.199941, 0.00994559]

n1 = Abs[0.2 -− d15a[[1]]];
n2 = Abs[0.01 -− d15a[[2]]];
n3 = Abs[0.2 -− d15b[[1]]];
n4 = Abs[0.01 -− d15b[[2]]];
n5 = Abs[0.2 -− d15c[[1]]];
n6 = Abs[0.01 -− d15c[[2]]];
n7 = Abs[0.2 -− d15d[[1]]];
n8 = Abs[0.01 -− d15d[[2]]];
n9 = Abs[0.2 -− d15e[[1]]];
n10 = Abs[0.01 -− d15e[[2]]];
n11 = Abs[0.2 -− d15f[[1]]];
n12 = Abs[0.01 -− d15f[[2]]];

g2 = Grid[
{{" trial ", "sample", " error mean ", " error s.d. "}}, Frame → All];
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g1 = Grid[{{"data15a", 4, n1, n2}, {"data15b", 12, n3, n4},
{"data15c", 100, n5, n6}, {"data15d", 1000, n7, n8}, {"data15e",
10 000, n9, n10}, {"data15f", 100000, n11, n12}}, Frame → All];

Column[{g2, g1}]

trial sample error mean error s.d.

data15a 4 0.00212348 0.000557249
data15b 12 0.00290421 0.00206254
data15c 100 0.00036434 0.00013507
data15d 1000 0.000146174 0.0000483148
data15e 10000 0.000128969 0.0000522355
data15f 100000 0.0000593452 0.0000544065

In the above grid it can be seen that the results of the MaximumLikelihood search get 
closer to the nominal values as the samples get larger.
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